
Contrôle d’accès tangible dans les bâtiments
intelligents par suivi de flux déclaratifs

François Lesueur (francois.lesueur@liris.cnrs.fr)∗
Sabina Surdu (sabina.surdu@liris.cnrs.fr)∗

Romuald Thion (romuald.thion@liris.cnrs.fr)†
Yann Gripay (yann.gripay@liris.cnrs.fr)∗

Meriam Ben Ghorbel-Talbi (meriam.talbi@liris.cnrs.fr)∗

Abstract: Les bâtiments deviennent de plus en plus intelligents avec l’introduction
d’innovations technologiques comme les réseaux de capteurs ou les compteurs électriques
intelligents. Les bâtiments intelligents promettent de simplifier le quotidien mais collectent
quantités de données personnelles, suscitant ainsi la méfiance des utilisateurs quant au
respect de leur vie privée. Les données observées prenant typiquement la forme de flux
d’informations, les bâtiments intelligents peuvent donc naturellement être programmés par
des systèmes de gestion de flux (DSMS – DataStream Management System), des systèmes
qui étendent la gestion de bases de données relationnelles classiques à des flux dynamiques
de données et permettent l’exécution de requêtes continues sur ces flux. Dans cet article,
nous nous intéressons au contrôle de la dissémination de données privées collectées dans les
bâtiments intelligents. Nous introduisons Tuple-Based Access Control (TBAC), un modèle
de contrôle d’accès qui suit les flux d’informations dans un DSMS. Les utilisateurs peuvent
exprimer des politiques de sécurité simples à comprendre, intuitives et garanties sur leurs
données qui les concernent. Quand les données sont combinées, leurs politiques de sécurité le
sont également à grain fin, et le contrôle d’accès est ainsi disséminé à travers le système. Nous
pensons qu’un tel modèle intuitif est nécessaire à l’adoption large des bâtiments intelligents;
les cas d’usage de TBAC s’étendent cependant à d’autres scénarios de dissémination.

Keywords: Privacy, Access Control, Smart Buildings

1 Introduction
Smart buildings are more and more common due to recent advances in sensor networks,
data gathering and data analysis technology. They promise to improve users’ lives, offering
comfort, greenness, and a string of innovative features like regulating heating and cooling
in an efficient way, while automatically adapting to users’ needs. But all this smartness
comes with a price. Such buildings are packed with arrays of sensors and actuators, which
pose as many threats to user privacy. Therefore, people are often reluctant to smart
buildings, fearing being spied by their boss or colleagues, since gathered and observed
data are personal (e.g., door opening, time of arrival). To allay security and privacy fears,
∗ INSA-Lyon, LIRIS, UMR5205, F-69621 France
† Université Lyon 1, LIRIS, UMR5205, F-69622 France
This work has been partially funded by the French ANR KISS project under grant No. ANR-
11-INSE-0005.

François Lesueur, Sabina Surdu, Romuald Thion,Yann Gripay and Meriam Talbi

these data need to be firmly protected. To this end, we aim at giving users the control over
how data that concerns them can be accessed by other actors in the system. We want to
provide users with the ability to enforce easy-to-understand, intuitive security properties
on data, which propagate throughout the system. We believe that security and privacy
are mandatory requirements for the development of smart buildings.

Smart buildings contain sensors that provide data streams and actuators that offer
invokable functionalities. A smart building may for instance provide the following sensors
for every office: door opening, room presence, light level, temperature; and the following
actuators: heating, cooling, light and shutter switches. Streams are meant to be man-
aged by Data Stream Management Systems (DSMSs), improved DBMSs that can execute
continuous queries on dynamic data. The SoCQ system [GLP10] is such a DSMS that
transparently interacts with streams and functionalities, by hiding imperative code be-
hind declarative interfaces in an SQL-like language. The SoCQ system has been used in
[GLL+12] to program a scenario very similar to smart buildings, encompassing sensors
and actuators and thus it is chosen as an enabling technology in this paper (Section 3).

All sensor data can be collected by a server which, in turn, commands actuators accord-
ing to its program. The following actions can be triggered by flowing data or at specified
time instants: on room presence, if the light level is below a certain threshold, switch the
light bulb on; on room presence, activate the heating system to 21◦C, on absence, set it to
19◦C; at the end of each week, send the sum of the presence hours to supervisors. In this
scenario, the smart building can improve user comfort (automatic actions), reduce the car-
bon footprint of the company (switching unneeded cooling systems) or ease management
(presence hours of employees). However, such setup naturally worries employees about
their privacy. Without privacy protection, people with access to the system can obtain
precise working habits, break intervals or arrival times which can lead to unacceptable
intrusion into users’ lives. Actually, supervisors only need data aggregated at a weekly
granularity to check worked hours and not the precise arrival or departure times.

To this aim, the contribution of this paper is Tuple-Based Access Control (TBAC), a
novel access control model that tracks information flows in a DSMS. Integrated into the
SoCQ system, TBAC tackles some of the privacy issues encountered in smart buildings,
i.e., the dissemination control of private data. With respect to alternative approaches,
TBAC presents two innovative features. First, users only need to express access rights
over sensors targeting them, choose at which time/space granularity these data can be
declassified and authorize different granularities to different readers, hence TBAC provides
a sense of tangible security to users, which is critical in smart buildings. Second, access
rights are associated to data following the sticky policy paradigm, propagated and combined
throughout the system to guarantee that declassification of combined data respects every
original rule set on sensor-produced data. Both the dissemination control offered by the
TBAC model and its tangible aspect can lead to a better acceptance of these buildings,
while not strictly limited to this scenario: more generally, dissemination of aggregatable
private data or e-health are envisioned.

In Section 2, we discuss the related work dealing with privacy in smart building and
dissemination control. Then, in Section 3, we describe how to program a smart building
using a declarative approach with the SoCQ DSMS. In Section 4, we present the TBAC
model and we show how to integrate it into the SoCQ system. In Section 5, we describe
a policy administration GUI to show how users can specify their privacy policy. Finally,

Contrôle d’accès tangible dans les bâtiments intelligents par suivi de flux déclaratifs

in Section 6, we propose some future work.
In this paper, we make the following assumptions. First, the DataBase Admin is

trusted (the DBA problem is orthogonal). Then, data are currently stored in a trusted
server without cryptographic protection (future improvement).

2 Related Work
Since we propose to use flow control to protect privacy in smart buildings, we first describe
related work on privacy in smart buildings and we then discuss previous propositions on
generic-purpose flow control.

2.1 Privacy in Smart Buildings
The privacy issues have been widely investigated in the literature and many obfuscation
strategies have been proposed in order to keep personal information confidential and to
prevent from malicious invasion of privacy. As we stated previously, smart buildings are
designed to exploit personal informations to give personalized services to users. Moreover,
users do want to disclose some of their personal information to better collaborate with
their colleagues. Hence, a balance between privacy and utility must be preserved and it
is mandatory to provide means to users to specify their own privacy policy. We discuss in
the following related work on the privacy issue in smart environments.

In [MK02] authors propose an access control mechanism for the Solar system, an
event-based context distribution infrastructure. The proposed approach is based on a
conservative information-flow model where end-users can express discretionary relaxation
of the resulting Access Control List (ACL). Each event is tagged with an ACL derived
automatically from the ACL on events that contributed to its production. However, to
release constraints on a data inside the system, users need to express exactly on which
operator in the system this declassification happens and thus need a global view and un-
derstanding of the global workflow, which seems hard to require from end-users. Moreover,
although controlled by the end-user, this declassification is prone to information leakage
if the user does not fully understand all the private data which can arrive at this point.
This is contrary to our current work where users only need to specify properties to be
validated on original streams and do not need any insight on the global workflow.

In [KHFK07] authors present a policy language based on the metaphor of physical
walls, called virtual walls, using the Solar system as sensing infrastructure. They introduce
the concept of personal footprints, a various classes of events containing details about
users’ activities, the timestamp and the set of sensors where the footprint originates. End-
users are allowed to regulate access to their personal footprints by specifying virtual walls
around a given place, e.g. a room or a building’s floor. Each virtual wall applies to a set
of users and has transparency (transparent, translucent and opaque). Here authors focus
on how users can specify their privacy requirements and how to help them to understand
it, by giving an intuitive policy abstraction, like for instance the circle metaphor in the
Google+ social network. The TBAC model is at a lower abstraction level, thus the virtual
walls approach may be used to simplify the specification of large policies by providing an
intuitive metaphor on top of TBAC.

Confab [HL04] provides a framework for ubiquitous computing applications, where
personal informations are captured, stored and processed on the end-user’s computer as

François Lesueur, Sabina Surdu, Romuald Thion,Yann Gripay and Meriam Talbi

infospaces. Tuples are used to represent users contexts, that can be static, as name and
email, or dynamic, as location and activity. Each tuple can have a privacy tag which
describes the end-user’s privacy preferences. These tag can specify TimeToLive, i.e. how
long data should be retained; MaxNumSightings, i.e. the maximum number of previous
values that should be retained; Notify, i.e. an address to send notifications of second use
to; GarbageCollect, i.e. additional hints on when the data should be deleted. Privacy
preferences are specified by end-users when a client application makes a request to an
infospace. These preferences are then stored and used later for the associated service.
This work is similar to ours in the sense that they allow users to specify their own privacy
policy and stick this policy with users data to enforce it. However, they do not focus on
the combination and aggregation problems, which are at the center of our work.

In this paper, we explore a new access control model using a declarative DSMS frame-
work to program smart buildings. In fact, tracking information flows in a declarative
program offers different possibilities, compared to the previously cited papers which are
all using imperative programs. First, the higher level semantics of declarative operators al-
lows a better understanding of programs which tend to be more concise and clearer. Then,
declarative programming is intensively used by developers today, e.g., the prominence of
SQL in DBMS, so we merely tailor our approach to fit current development usages. The
database layer has also shown over the years to be a good abstraction for security features.

2.2 Flow Control in DSMS
Lattice-Based or Mandatory Access Control, generalizing the confidentiality model from
Bell and LaPadula [BL73], can be used to control information flows in a DSMS. Each data
has a label, combining data creates new data with a more restricted label and users can only
access data with a label equal or inferior to their clearance level. Such models guarantee
that information cannot be accessed by users who had no access to original data. However,
they are too restrictive in our context as, for instance, a mean of a set of temperatures
would be labeled as confidential as soon as one, possibly in one thousand, is confidential.
Rendering these systems more usable requires declassification: a highly privileged process
can downgrade the label of some composite data to make them more accessible, e.g., to set
the mean temperature as public. However, declassification is executed on composite data
with no history on contributing data, yielding potential errors and unexpected information
leakage. Moreover, data creators cannot control this process, what data it declassifies and
how.

Dissemination Control (also called Originator Control) models [MMN90] tackle un-
controlled declassification. Users attach security policies to the data they produce. The
dissemination of these data must obey expressed constraints, while still providing some
guarantees on information flows. These constraints may express a path of dissemination,
some intermediary controls, etc. For instance, [SRZ06] proposes a Policy, Enforcement,
Implementation model for secure information sharing. This paper encompasses a wide
area from policy to user authentication and thus only provides a bird eye’s view on the
topic of declassification. The combination and aggregation problems, which are at the
center of our work, are however not addressed.

In [NRB08] authors propose a stream-centric approach where security restrictions are
streamed together with the data, as Security Punctuations (SPs). SPs are meta-data that
specify who has access rights to which streaming data. These meta-data are specified by

Contrôle d’accès tangible dans les bâtiments intelligents par suivi de flux déclaratifs

end-users and then combined by the DSMS server with the server-side policies in order
to allow organizations to enforce their own policies. To address the combination and
aggregation issues, authors propose to extend stream algebra to become security-aware.
Authors advocate their proposition as an access control enforcement mechanism rather
than a new control model, hence our TBAC model is complementary and may in fact be
implemented using SPs.

3 Enabling Technology: Declarative Smart Building
The SoCQ system is a DSMS that provides a relational abstraction and a SQL-like query
language on top of distributed services and can be used in a smart building environment.
We briefly describe this enabling technology which is the underlying block on which we
add dissemination control mechanism to provide a privacy-aware smart buildings infras-
tructure. Note that an other declarative DSMS might be used as well.

For each type of sensor, a relational table is created. This table is tightened to sensors
and actuators through binding patterns, which link declarative statements to imperative
code and protocol. The content of the table is a structured stream of data tuples from
sensors and SoCQ can then execute SQL-like queries on sensor data. For each type of
actuator, a table is also created. In a symmetric way, binding patterns link tuples inserted
by the DSMS into this relation to imperative code and protocol. Tuple insertions trigger
imperative code which can, in turn, activate actuators. Imperative code is minimalistic in
our scenario, doing very simple tasks. All the computation and combination of information
flows is done inside SoCQ, at the declarative level.

The SoCQ system is in used in the SoCQ4Home project1, a smart building management
project. An experimentation platform is installed in the authors’ building at LyonTech
Campus in France: 50 wireless sensors (temperature, CO2, humidity, luminosity, presence,
doors) are deployed in about 20 rooms (offices, common room, teaching rooms). The
smart building program is implemented through SoCQ continuous queries that subscribe
to streams (e.g., temperature streams from sensors), manipulate data, or invoke actuator
functionalities (e.g., activate heater).

The global workflow is illustrated in Figure 1, where the so named CS smart building
contains presence and temperature sensors, and temperature heater actuators. A back-
ground continuous query CQ1 monitors tuples from presence sensors streams and, based
on presence (ON) or absence (OFF), sets the temperature of the corresponding area ac-
cordingly, through a temperature heater actuator.

Moreover, data from the system can also be queried by a Building Manager (BM) who
wants to see aggregated temperatures based on temporal and spatial criteria (e.g., query
CQ2). In this query, the BM should not have access to data in stroked red rows, i.e., data
that are privacy invasive, but only to aggregated data. For instance, the BM cannot access
a row that gives the average temperature for one office on a per-minute basis as being too
specific. By contrast, if either the area or the time interval increases, the data are sensitive
anymore, so the BM can access them. In our proposition, this access decision is entirely
controlled by the users to whom sensors relate.

1 http://liris.cnrs.fr/socq4home/

François Lesueur, Sabina Surdu, Romuald Thion,Yann Gripay and Meriam Talbi

…"(ps3,12:02h,Off,"Office"Z)"…""

Temperature
Sensor2

Presence
Sensor3

Temperature
Sensor1 …"(ts1,12:03h,17,"Office"X)"…"

…"(ps1,12:05h,ON,"Office"X)"…"

…"(ts2,12:04h
,23,"Office"Z)"…"

…"(ps2,12:07h,OFF,"Office"Y)"…."
"

Hea$ngActuator- Loca$on- Setpoint-

th1- Office-X- 21-

th2- Office-Z- 19-

…- …- …-

Sensor' TS' Presence' Loca-on'

ps3' 12:02' OFF' Office'Z'

ps1' 12:05' ON' Office'X'

ps2' 12:07' OFF' Office'Y'

…' …' …' …'

Sensor' TS' Value' Loca/on'

ts1' 12:03' 17' Office'X'

ts2' 12:04' 23' Office'Z'

…' …' …' …'

Hea$ngActuatorSetpoints1

Presence'

BM’s%CQ%2%

Temperatures*

Background+CQ+1+

Sensor' Period' Loca.on' Avg'temp'

ts1$ 1$ OfficeX 16$

ts1' 3600' Office'X' 22'

ts1' 1' Floor'1' 15'

…' …' …' …'

Agg#temperatures#

X"
!!
!!BM#

SoCQ%

CS#smart#building#

Temperature
Heater2

Temperature
Heater1

Presence
Sensor1

Presence
Sensor2

Fig. 1: Global workflow

4 Tuple-Based Access Control
In this section, we present the TBAC model on top of the SoCQ system. Our approach is
based on policies expressed on sensors and on subsequent combinations of policies through-
out the SOCQ system. First, users tag the sensors they are authoritative for with a security
policy, named s-tags, defining who has access to data produced by these sensors and at
which aggregation level. Second, the output data stream of a sensor is duplicated at each
aggregation level and the resulting tuples are tagged with the sensor’s set of authorized
user. Third, when tuples are combined by SoCQ queries in order to provide smart features,
their authorized users are combined to tag the output. Finally, when a user like the BM
tries to access some data, she obtains the result only if she satisfies all the policies stated
by original users.

4.1 Security Policies
In smart-metering in particular, a privacy-aware security policy should ensure users cannot
execute queries that are too intrusive, based on spatial or temporal criteria. E.g., in the
motivating scenario, one does not want the BM to access their precise arrival and departure
time, but only office spent time on a weekly basis. Likewise, BMs should be prevented from
deducing when an employee is present based on temperatures variations (door opening,
etc). Instead, BMs may only obtain values aggregated on space or time.

The key ingredient of these requirements is the granularity of the aggregation operators
on spatial and temporal dimensions. The set K of all s-tags is defined as a set of atomic
policies, each one defines a minimum granularity at which a data must be aggregated
before disclosure. We note by T is the lattice of time aggregation levels, S the lattice of
space aggregation levels, OP the required aggregation operations (e.g., min, max, average,
median, count) and U the set of users. The definition of T and S as lattices is standard

Contrôle d’accès tangible dans les bâtiments intelligents par suivi de flux déclaratifs

in multidimensional datawarehouses to build the lattice of all possible aggregation levels,
named lattice of cuboids. For instance the triple (week, office, avg) ∈ T × S × Op allows
the use of the sensor’s data by queries that are coarser than a weekly report on offices’
temperatures. We note by P the powerset, by + the disjoint union and by ⊥ a special
element that captures the lack of any constraint and we formally define K:

K = P(({⊥}+ T × S ×OP)× P(U))

For example, consider the s-tag k = {k0, k1} constructed from two atomic policies
k0 = ((week, office, avg), {BM, BMa}) and k1 = (⊥, {Alice}). This policy is attached
to the Temperature Sensor 1 (TS1). This s-tag states that the building manager BM
and his/her adjoint BMa are authorized to query the stream only for a weekly report.
However, the user named Alice can compute everything using data emitted by TS1 without
constraints.

When a SoCQ query is executed, for instance computing the weekly temperature report
(CQ2), it consumes input streams, combines them and produces an output stream whose
data must be tagged according to the inputs’ s-tags. Security policies are thus propagated
throughout the system.

4.2 Aggregations of sensor streams
With the proposed security policies, access to composite data should be granted only if
those data have been aggregated according to all the policies set on original data. However,
being able to ask for aggregation queries on raw tuples could lead to information leakage;
Consider the following scenario. Alice, in the CS building of Figure 1, tags her temperature
sensor TS1 with the k policy. Inside the SoCQ system, a table Temperatures off all rooms
in the building is generated. The BM could then directly query Temperatures, containing
only current temperatures, for an average over 7 days of Alice’s data. Since there is only
one value in the table to average, which is the current temperature in Alice’s office, the
average would be this precise value, which should not be obtained by the BM. However,
the system would validate the fact that data has been averaged over 7 days, since the
query required this average, and send the data to the BM. While we could imagine some
metrics based on k-anonymity, l-diversity, t-closeness or differential privacy, we propose
an alternative and complementary solution.

For each sensor stream entering the system, we duplicate it according to the aggregation
levels specified in its s-tags. E.g., for sensor TS1, tagged with k = {k0, k1}, two streams
are fed into the SoCQ system: TS1_Alice, the raw stream authorized to Alice by k1, and
TS1_week_room_avg, the stream averaged over a week on a room basis, producing only
1 tuple every week, authorized to BM and BMa by k0. This duplication can be done
automatically by enumerating the constraints in the expressed security policies and then
naming the stream in a canonical way. Such views on streams are a logical definition
that will be executed only when needed and not materialized systematically. The idea
of defining a set of views, one for each aggregation level, and choosing the right one at
execution time is well studied in the field of data warehouse and multidimensional analysis.
The duplicated views are those whose aggregation levels are coarser than required, e.g.,
with k0, the views with aggregation at week or building levels are authorized.

Finally, data tuples stored in the system are only tagged with the set of users allowed
to read them, instead of an element of K. For instance, all tuples in TS1_Alice are tagged

François Lesueur, Sabina Surdu, Romuald Thion,Yann Gripay and Meriam Talbi

with the singleton {Alice} and those in TS1_week_room_avg are tagged with {BM, BMa}.
This construction ensures that security policies expressed by users are enforced. The price
to pay is denying access to data which could be allowed by the user, but we argue this is
a reasonable trade-off between accuracy and privacy.

4.3 Combination Operators

We need operators to define how to combine set of users. As it is done in the relational
model with provenance [GKT07], each SoCQ relational operation has to define how allowed
users are combined. One of the remarkable result of the provenance framework of [GKT07]
is that only two operators ⊗ and ⊕ are needed to combine meta-data associated to tuples
when base tuples are combined by means of the relational algebra.

Basic SoCQ operations from relational algebra are Select, Project, Join, Rename and
Union. Select and Rename are transparent as they do not alter the set of authorized users:
renaming rows or picking a subset of data in a stream do not alter tuples. Project and
Union can merge several original tuples into the same one. Its set is the union of allowed
users on original data: access to the composite tuple requires access to either of the original
ones, formally, x ⊕ y = x ∪ y. Join combines two original tuples into a composite one,
whose set of authorized users is the intersection of allowed users on original data: access
to the composite tuple requires access to both original ones, formally, x⊗ y = x ∩ y.

4.4 Access Control Filter

The access control filter has to trap every access attempt and to filter whether the request
is authorized by the security policy. In our setting, requests are SoCQ queries that are
either ran in the background to trigger actuators or submitted by users. Access must be
filtered in both cases.

For instance, a tuple tagged with {Alice, Bob} is allowed to be read by both Alice and
Bob. This situation corresponds to the case where the tuple can be obtained in different
ways, for instance if TS1 and TS2 are two sensors in different offices X and Y allowed to
be accessed by Alice and Bob respectively. If both offices are quite warm, both Alice and
Bob can read the positive answer to the query “is there any office with temperature higher
than 21 °C?”. There is only one value, namely true, tagged with {Alice, Bob}. However,
if the query is “what are the offices with temperature higher than 21 °C?”, Alice will only
read Office X tagged with {Alice}.

For queries triggering an actuator, each actuator is empowered with the credentials of
its owner. For instance, the heater actuator HA1 in Alice’s office has Alice’s credentials.
For each table that sets an actuator’s setting, the latter is effectively transmitted to the
actuator if and only if this actuator belongs to the authorized userset. In the example,
HA1 can use TS1’s temperature values because of policy k1 that authorizes Alice.

User queries are naturally empowered with user’s credentials. When a user sends a
query, the engine picks the view that best matches the query among the possible aggre-
gation levels and then filters the stream on-the-fly, such that only tuples whose s-tags
contain the user as a member are kept.

Contrôle d’accès tangible dans les bâtiments intelligents par suivi de flux déclaratifs

5 Policy specification
Figure 2 describes the user interface for specifying the privacy policy. Users can edit their
privacy policy in order to add a new rule, to modify or to delete an existing one. The
policy specified by the organization, which is read-only, is also shown on this interface.
Although the user is not allowed to edit it, it is part of its contract to show, for instance,
the number of presence hours in office averaged by week to its supervisor. Showing this
policy makes it transparent to the user who is allowed to access which part of its data,
which is an interesting privacy property.

Fig. 2: TBAC-SoCQ Graphical User Interface

To add a policy, a user can specify a default policy that applies to all of its sensors or a
more specific one that applies for each sensor that he is authoritative for. To set her privacy
preferences, she can specify for each user, which operation is allowed on the generated
tuples and at which spatial and temporal aggregation level. The different s-tags specified
for the same sensor (organization’s policy, user’s default policy, user’s specific policy) are
then combined using the ⊕ operator. Moreover, as we mentioned in the previous section,
different users can tag the same sensor (shared offices for instance), in which case these
s-tags will be combined using the ⊗ operator.

6 Future Work
TBAC is a preliminary sketch of a security model presenting innovative features, like
palpable, user-defined privacy, and dissemination control. It grounds on declaratively
programming smart buildings, using DSMSs such as SoCQ.We envision a full integration of
TBAC in SoCQ. We want to propose more expressive security policies and find alternatives
to stream duplication (raw and aggregated), yet provide the same security guarantees. The
integration of privacy measure such as k-anonymity, l-diversity or t-closeness into a DSMS
is a promising direction to provide privacy settings complementary to s-tags. Storing
data in secure personal tokens [AAB+10] can also alleviate the DBA trust hypothesis.
Furthermore, we plan to enhance the user interface by using an abstraction level in order

François Lesueur, Sabina Surdu, Romuald Thion,Yann Gripay and Meriam Talbi

to ease the users’ privacy management. We can ground our work on existing studies such
as [KHFK07], where different transparency levels are proposed. Thus, instead of specifying
details about the allowed operation that can be done on the generated tuples we can use
privacy levels. Moreover, the concept of virtual walls can be used to allow users to specify
a privacy policy that applies to a given place including a set of sensors.

References
[AAB+10] T. Allard, N. Anciaux, L. Bouganim, Y. Guo, L. Le Folgoc, G. Nguyen,

P. Pucheral, I. Ray I., Ray, and S. Yin. Secure Personal Data Servers: A
Vision Paper. VLDB, 3(1-2), 2010.

[BL73] D. Elliott Bell and L. J. LaPadula. Secure Computer Systems: Mathematical
Foundations and Model. MITRE CORP BEDFORD MA, 1, 1973.

[GKT07] T. Green, G. Karvounarakis, and V. Tannen. Provenance Semirings. PODS,
2007.

[GLL+12] Y. Gripay, F. Laforest, F. Lesueur, N. Lumineau, J.M. Petit, V.M. Scuturici,
S. Sebahi, and S. Surdu. ColisTrack: Testbed for a Pervasive Environment
Management System (Demo). In EDBT, 2012.

[GLP10] Y. Gripay, F. Laforest, and J.M. Petit. A Simple (yet powerful) Algebra for
Pervasive Environments. In EDBT, 2010.

[HL04] J. I. Hong and J. A. Landay. An Architecture for Privacy-Sensitive Ubiquitous
Computing. In MobiSYS, 2004.

[KHFK07] A. Kapadia, T. Henderson, J. J. Fielding, and D. Kotz. Virtual Walls: Pro-
tecting Digital Privacy in Pervasive Environments. In Pervasive Computing,
2007.

[MK02] K. Minami and D. Kotz. Controlling Access to Pervasive Information in the
Solar System. Technical report, Dartmouth Computer Science, 2002.

[MMN90] C.J. McCollum, J.R. Messing, and L. Notargiacomo. Beyond the pale of MAC
and DAC-defining new forms of access control. IEEE Computer Society Sym-
posium on Research in Security and Privacy, 1990.

[NRB08] R. V. Nehme, E. A. Rundensteiner, and E. Bertino. A Security Punctuation
Framework for Enforcing Access Control on Streaming Data. In ICDE, 2008.

[SCFY96] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-Based
Access Control Models. Computer, 29(2), 1996.

[SRZ06] R. Sandhu, K. Ranganathan, and X. Zhang. Secure Information Sharing En-
abled by Trusted Computing and PEI Models. In ASIACCS, 2006.

