
Preventive information flow control through a
mechanism of split addresses

Deepak Subramanian (deepak.subramanian@supelec.fr)∗

Guillaume Hiet (guillaume.hiet@supelec.fr)∗

Christophe Bidan (christophe.bidan@supelec.fr)∗

Abstract: The security of the web-browser and JavaScript is pivotal in today’s world. The
potency of information flow control in data leak prevention is very appealing. In this paper,
we propose a new secure data flow model specifically designed for interpreted languages,
more specifically, JavaScript. Our model relies on three elements for access control and
one information flow element. We aim to implement this model by splitting variables and
subsequently isolating sensitive variable address spaces.

Keywords: Access Control, Information Flow Control, Web Security

1 Introduction
The current state of the Internet and web technologies makes it extremely appealing
to the vast majority of the computerized world to depend on purely on-line services.
The advent of HTML5 has triggered an array of approaches increasing the feature set
of web applications. Some of these novel technologies such as CORS, message passing,
WebRTC or web sockets, allow for communication on web pages on levels that were not
feasible earlier. Others such as IndexedDB and local storage increase client side storage
capabilities. This has led to an increasing need to improve the security of the web-browsers.
These techniques stress on the need to monitor these new possibilities of information
leakages since the web pages are converging to the functionalities traditionally reserved
for desktop applications.

Over the years, there have been a lot of improvements including the key conceptual-
ization of “same-origin policy”. Despite all these current safeguards, constant threats to
web-services prevail, thereby, increasing the desire for security enhancements to help in the
progression towards a better Internet. Some of the most prominent vulnerabilities such as
cross-site scripting and cross-site request forgery feature in the OWASP Top Ten [OWA].
These attacks can be characterized by malicious information flows and hence information
flow control is an effective methodology to counter them.

In this paper, we describe a pragmatic approach to information flow analysis on a web-
browser. We propose a preventive mechanism for the analysis and enforcement of security
on an interpreted language such as JavaScript where several activities are triggered by
events.

∗ Supélec/INRIA, CIDRE team, France



Deepak Subramanian and Guillaume Hiet and Christophe Bidan

The rest of the paper is organized as follows. The various related works are described
in the section 2. The section 3 provides the details of our model and section 4 presents
the conclusion for this work.

2 Related work
Information flow control (IFC) is a very important model for assuring that information
traverses from the assured source to the designated destination without data leaks. The
most popular IFC models are possibilistic approaches. A possibilistic approach is when
the model’s objective is to eliminate any possibility of leak if the leak is considered feasible
by the model. In this approach, the information flow is marked and when undesired flow
is reached, the information flow is stopped. In IFC, the concept of lattice based models is
often used to present a set of labels that indicates the sensitivity of information. There have
been several efforts in IFC as detailed by Sabelfeld and Myers [SM03]. These approaches
often rely on non-interference property [SS98, Bie13] which states that no secret inputs
to the program can influence publicly observed outputs. Formulated in terms of program
executions, if the program is run with different secret inputs, while holding the public
values fixed, the public output must not change [HS12a]. Termination-insensitive non-
interference [AHSS08, Bie13, SM03] only gives a guarantee about terminating programs,
ignoring that non-termination may leak some confidential information. A relatively recent
work by Bielova [Bie13] provides a clear and comprehensive list of notable IFC techniques
in the context of JavaScript. The author compares the various techniques with their formal
guarantees, the types of analysis (i.e. static vs. dynamic approaches), the implementation
strategies used and clearly enlists the salient points of each approach. This work has been
instrumental in providing a complete picture of this research area thereby becoming a
valuable stepping stone to the design of our approach.

IFC could also be done using probabilistic approaches. In this case, every information
flow is not only marked but also trailed for information leakage and attained information
leakage values. Once these values reach a threshold, information flow needs to be stopped.
This provides direct advantages over possibilistic approaches by allowing for more fine-
tuning thereby reducing the margin for over-approximation. Shannon Entropy [Sha48]
still sets itself as a hallmark for several analysis techniques. The other techniques that
have gained popularity include min-entropy [R6́1], guessing entropy [Mas94], marginal
guesswork [Pli00] and gain functions [ACPS12]. Most approaches assume the existence of
an oracle which tries to find the value of the variable when each information is disclosed.
Alvim et al. [AAP10] make a comparative study on the various probabilistic information
flow techniques that are currently being used. The work on gain functions by Alvim et
al. [ACPS12] is noteworthy. This work focuses on gain obtained when a attacker is able
to guess a part of a secret or a property of the secret and also assures improvements over
min-entropy. The authors show how every bit exposed actually affects the resulting en-
tropy and highlights the improvements in min-entropy that are required to provide a more
accurate analysis. However, this approach in its current state is not easily malleable to an-
alyze variables where different segments of the variable have different levels of information
sensitivity. The use of marginal guesswork [Pli00], that is relevant to dynamic information
flow analysis, shows a realistic information flow scenario where multiple queries are posted
to a single oracle to determine the value of the variable. This approach is especially useful



Preventive information flow control through a mechanism of split addresses

to our proposal since we expect different segments of the variable to have different levels
of information sensitivity. For example, in the credit card industry the PCI-DSS model
has successfully increased the adaptation of the PAN truncation mechanism [Wikb, Wika]
which makes sure that only the last four digits of the card number are advisable to be
disclosed and even receipts need to adhere to printing at max the first six digits and the
last four digits. Since, the various digits have varying weights and different disclosure
levels. This can be configured using probabilistic information flow models in cases where
a script may need to identify the card provider (first six digits) but further information
regarding the card is not disclosed.

The work by Hedin and Sabelfeld [HS12b] distinguishes itself by providing a view
of the traditional approach described by Sabelfeld and Myers [SM03] in the context of
JavaScript. The authors make an interesting case for the problem of the information-
flow being flow sensitive in JavaScript. This increases the need to keep track of changing
labels throughout the execution which becomes tedious with pure static approaches. The
authors hence suggest a dynamic approach that is comparable to the no-sensitive-upgrade
proposed by Austin and Flanagan [Aus13]. The difference is that Hedin and Sabelfeld
allow some upgrade instructions before the behest of the implicit information-flow. The
authors provide valid arguments for the implicit control flows generated by JavaScript
especially by the eval function. It should also be noted that this approach is formally
proved by the authors to fulfill the guarantees of termination-insensitive non-interference.
This work is relevant to our understanding of how the general language based IFC can
be correctly adopted to a weak typed interpreted language. Our model produces a more
pliable approach designed specifically for the JavaScript context and aims to be more
effective in this context.

FlowFox is a real implementation of IFC on the Firefox web browser by De Groef
et al. [GD12]. FlowFox uses the concept of secure multi-execution that was introduced
by Devriese and Piessens [DP10]. In secure multi-execution, the information flow across
labels is segregated at the process level by providing a separate process for each level
of sensitivity. This concept relies on the execution of completely isolated processes. If
various halting processes are handled properly with correct rules, a termination-sensitive
non-interference is achieved. This property is a key differentiator for FlowFox. The various
“policy rules” proposed by the authors provide a justifiable entry-point to the dynamic
policies that we propose in this paper. The authors have also taken into account some of
the events that may cause information flows such as key-press events. The authors believe
in the need to change the JavaScript interpreter of a full fledged browser thereby realizing
a more significant result due to the ability to monitor various factors such as performance,
model verification and implementation results. This model is related to our work and is
currently the preeminent model in web-browser IFC. Our work aims to achieve similar
security guarantees as FlowFox, but with reduced time and space complexities.

The faceted approach that has been proposed by Austin et al. [AF09, Aus13] is the most
similar approach to our proposal. The authors are targeting the achievement of the same
security guarantees as FlowFox without requiring additional process based executions. The
similarity between our approach and the faceted approach exists in the use of public and
private side of values for each variable. Using such an approach allows isolation without the
need to allocate a separate process. The faceted approach is verified formally to provide
termination-insensitive non-interference. The authors have implemented the analysis using



Deepak Subramanian and Guillaume Hiet and Christophe Bidan

a plugin for Firefox called ZaphodFacets which uses the Narcissus engine. Cross-site
scripting is handled effectively by the faceted approach. The main difference between our
approach and the faceted approach is the use of principals in the faceted approach and the
nature of IFC. In the faceted approach, all the execution paths need to be evaluated. In our
approach we choose the path of least required execution and evaluate only programatically
necessary code. Such an exhaustive evaluation of the faceted approach results in the
faceted value having nested facets. This directly results in the number of versions of
the variable necessary being at least two in the faceted approach while it is strictly two
in our approach. This is a major difference between the approaches thereby intuitively
resulting in a reduced time and space complexity. The faceted design extensively uses
the concept of principals which serve as intermediaries between the functions requesting
access and the variables. Thanks to the notion of dictionaries, our approach can directly
link functions to variables which we presume to be simpler than the notion of principals
used in the faceted approach. The final and crucial difference is that our approach targets
to be a probabilistic information flow approach and the faceted approach is a hallmark
possibilitistic information flow approach.

3 Address-split design approach
Our approach focuses on typical web-browser which generally consists of the JavaScript
engine and a rendering engine. The JavaScript engine is composed of the interpreter
and the interface to the rendering engine. We believe that a greater amount of IFC
could be achieved by directly modifying the interpreter. This is consistent with related
research [Aus13, GD12].

In this section we introduce the address split model. The naming is in accordance with
the model’s general ideology of variable replication. The simple split is described in the
Figure 1 below. In JavaScript all the variables are pointers and hence access to values is

Fig. 1: The address split design



Preventive information flow control through a mechanism of split addresses

through reference. Let us consider a variable that contains sensitive information. This
influences the decision of removing the variable from the easily accessible address space.
To achieve this, we split the variable into two address spaces which we henceforth call as
interfaces.

The public interface to the variable contains randomly generated dummy values. The
private interface to the variable can be accessed only when the address space is known.
This is managed at the interpreter end of the JavaScript.

Access to variables that are sensitive are given by the private interface to that variable.
The rest of the model describes how this concept can be used effectively. To help with the
usage of split addresses, we describe a host of elements and approaches that we adopt for
a suitable information-flow theory to be present. The model is highly motivated by the
need to control variable access with precise visibility and elegant failure of any functionality
when access is not permissive. The components described in this model include the 3+1
modes of control, the types of functions, the concept of dictionaries and its various types,
and the policies. The 3+1 modes of control, described in section 3.1, provide the details
on the various modes of access control and IFC. Functions are objects where the modes of
control are applied. Our approach requires functions to be segregated into varying types
based on their required functionalities so that the information flow can be handled correctly
as described in section 3.3. Dictionaries, described in section 3.4, are the components that
implement the modes of control on the functions. They provide a means to access the
private instances of the variable when the modes of control allow it. Finally, the policy
specification, described in section 3.2, defines the modes of control on the objects to the
policy engine which in turn implements the dictionaries.

To illustrate our approach, let us consider two common scenarios in modern day brows-
ing. The password box scenario is one of the most common day-to-day sensitive infor-
mation scenarios. The password box security often relies on a pure display-based security
based mechanism. It aims at obfuscating visible output from the user. This mechanism
does not provide any functionalities to limit scripts from accessing the actual password.
The translator scenario is fast becoming a very common scenario. The presence of
several human language make it a requirement to translate complete pages between lan-
guages and this poses the problem of passing sensitive information to untrusted servers.
Translators have access to the entire page and monitor the page for any changes to trans-
late instantaneously. A script typically accesses the website and monitors for changes.
The entire text that needs translation is then sent to the translator servers and these are
suitably translated.

3.1 3 modes for access control and 1 mode for IFC
The password box scenario shows the clear need for access control to be present. The
password box still needs to be accessible to scripts to keep the existing functionality.
However, it should be noted that not every property of the password box needs to be
accessed by every script. For example, there might be scripts that require access to the
style property of the password box but do not require its value. Similarly, the password
box itself need not be available to unrelated scripts such as advertisements and social
network feeds. To facilitate such an arrangement we have envisioned different modes of
control.

The use of traditional access controls have been effective in various solutions such



Deepak Subramanian and Guillaume Hiet and Christophe Bidan

as OS level file access rights. IFC models have been able to monitor the flow of data
between components requiring different information sensitivity. Coupled together, the
access control and IFC check if the flow of data is permissible and also maintain details on
the sensitivity of data that is being transmitted. The “3+1 modes of control” is one such
model combining the best of both worlds. The modes of control are given to functions to
access variables. The IFC affects these privileges making the privileges pliable. We take
this stance of pliability to keep up with the chaotic environment of JavaScript.

We propose three main types of access control: Full-Bound Access, Semi-Bound Access
and Instance Access. The first two access control types represent the ideology behind
traditional access controls while the third is specific to this model to handle temporary
access conditions. A full-bound access is precisely like the name suggests. The function is
permitted to perform both read and write operations. A semi-bound access is given to the
function if it needs either read-only or write-only access to the variable. The mechanism
gives direct access to the variable for the function.

Let us consider the password box scenario. There are plugins which help in auto-filling
passwords. These functions might require full-bound access to the password box. For
example, the function that submits the password field to the required destination needs
semi-bound read-only access to the password box. The other functions do not require any
access to the password box.

An instance can be defined as that point in time for the program where a set of
conditions such as event triggers, function calls or variable values are met. Instance access
is a special mode we propose to ensure that the value of a variable is accessible only at
a particular instance. It must also be noted that the function never gets direct access to
the variable but only to its copy at that instance.

Let us consider the translator example. Sometimes the web-page being translated
might require sensitive input not intended for the translation server. This might be a
page with a credit-card payment step. In this scenario, the card information is accessible
to the translation server. The expected behavior would be to translate only the static
page before the sensitive fields are filled in and then to stop the translation as soon as the
keypress event in any of these fields is triggered. The translator would not crash since its
copy remains unchanged and this functionality resumes on page load.

Transitive information flow represents the IFC element of the 3+1 modes of control.
This is a complementary mode of control that is present to provide for a probabilistic
approach to the problem. The transitive information flow can be defined as the amount of
data belonging to the variable that can be declassified by the function without requiring
additional privileges. While this is the disclosure entropy of the variable, the calculation
of such entropy must take into account that some digit of the variable could be more
important than the other and some patterns could be expected. For example, in a URL,
the string before the GET parameters is relatively constant. In case of basic authenti-
cation, the user name and password can be part of the url string itself in the form of
http://username:password@url?params. Such parts of the url need to be secured despite
possible information leakage. The transitive model aims to do exactly that. Specifying
unattainable weights for such digits in the string, one can ensure that the scenario is never
reached where any character of the sensitive segments are leaked.



Preventive information flow control through a mechanism of split addresses

3.2 Policy Specification
Policy specification lists the set of policies that determine the IFC to be emphasized. The
policies themselves help in the analysis of the information flow and provide proper basis
for legitimate information flows. The policy specification is envisioned to be evolving
with some machine learning as part of our future work. The policy specification can be
augmented by the web browser user, or developer and there are background mechanisms
in this model that also influence the policy specification. In this model, we assume that
the web browser users’ policies takes precedence over all other policies.

3.3 Functions
Functions are the objects where the modes of access are applied. This approach requires
functions to be segregated into varying types based on their required functionalities so
that the information flow can be handled correctly. The various functions can be classified
into four types based on how the IFC needs to be handled: self-sufficient functions, utility
functions, inheritance functions and guest functions.

The self-sufficient functions are the functions whose policies are explicitly defined by
web browser users or web page developers as shown in section 3.2. It must be noted
that the self-sufficient functions can never take the privileges of their caller. Moreover, all
exceptions generated in a self-sufficient function can only be handled within its own scope.
If the exception cannot be handled within the scope, it is handled by an empty exception
handler that does nothing and does not pass the exception over to its caller. This allows
for functions to be handled with the privileged assigned to them without unintended leak
of information. The self-sufficient functions are envisioned to provide a means to assign
privileges to functions. Let us consider the password box scenario. The function which
needs access to the password box should be a self-sufficient function.

By default, a function is considered to be a utility function if it does not feature in
the policy specification. A utility function the truest form of what a function signifies.
It is considered as a modular piece of code that has been made into a function for easier
maintenance and reuse. Considering this, the utility function does not have any privileges
of its own. Every instance of a utility function adheres to the privileges of its caller. This
behaviour is transitive over the function call. Let us consider the password box scenario.
The function which has access to the submit button may have to send the password to
a server over a POST request using the jQuery library. In this case the jQuery library’s
POST function would be considered a utility function so that it can perform the intended
action as long as the caller function has the privileges to read the password.

Inheritance functions are a type of function that are present due to the nature of
JavaScript that allows the creation of functions at runtime. In our approach, the functions
that are created at runtime are defined as inheritance functions and have three important
restrictions:

1. The inheritance function may not own more privileges than its parent.

2. The inheritance function will continue to be bound to its parent when things change.
For example, if the parent drops privileges, the inheritance function may no longer
have them. Similarly, if the parent function is deleted/destroyed, the inheritance
function will loose all privileges. It will not become a utility function (unless it
already was a utility function).



Deepak Subramanian and Guillaume Hiet and Christophe Bidan

Guest functions are a special type of function which can use the privileges of a particular
self-sufficient or inheritance function as a guest when specific conditions such as variable
value, event trigger are met. One of the applications of this functionality is in the case
of asynchronous communications and JSONP generated as part of a utility function. The
privileges granted to the guest functions are temporary. This type of function is very
useful since it allows us to permit for temporary privileges to be assigned to functions
with definitive limitations. Let us consider the password box scenario. When the user
name is being typed, there are options that pop-out from auto-fill elements. If the user
selects one of these user names, the password needs to be auto-filled but not until then.
Hence a guest access can be provided to write to the password field for one time when
the user name is selected from the drop-down. This protects the field while preserving the
functionality.

3.4 Dictionaries
To implement the different modes of access on functions to variables, our approach relies on
a dictionary. Dictionaries provide a means for the functions to access the private instances
of the variable. Each dictionary contains the variable reference as the key and a memory
location as a value. The dictionaries provide data on the variable based on the various
modes of control. There are a few types of dictionaries based on their purpose: private
dictionaries, group dictionaries, subset dictionaries, and instance dictionaries.

Private dictionaries are exactly as the name suggests. They are private to the function
they belong to. Every function has its own private dictionary. A group dictionary serves
the purpose of a label based access. The label based access allows the functions to have
common modes of control. If grouping were required, for example, in the case of multi-level
models, such a grouping could be incorporated using the concepts of group dictionaries.
The group dictionaries can be accessed by any number of functions as long as they have
access to this dictionary. Subset dictionaries are those which represent a smaller set
of private interfaces which can be accessed by their superset dictionary. Incidentally, the
group dictionaries are usually a subset to the private dictionaries of the functions accessing
them.

The main purpose of the instance dictionary is to provide the value in case of the
instance access type. The instance access is handled when the instance occurs and hence
there is a need to update the values at the particular points of access. This point of access
is also known as the instance dictionary and this dictionary is generally a subset to the
private or group dictionaries.

4 Conclusion
The dynamic nature of JavaScript makes it necessary for novel approaches to address the
information leaks. We propose a model that uses policy specification in coherence with
dictionaries and the address split design. Our objectives are to overcome several web-
vulnerabilities and to assure the best compromise between functionality and security. The
proposed model is to split the variables into interfaces that can be accessed as needed and
the model also ensures direct memory mapping therby intuitively having a lower latency.
The address split design is capable of handling various scenarios and also provides the
key concepts required to control the information flow in a JavaScript enviroments. This



Preventive information flow control through a mechanism of split addresses

paper provides a viable model to achieve good security without the need to have numerous
processes as per the secure multi-execution models or exponential growth in number of
facets in each variable. It also takes into account both information flow control and
access controls. The future work of the model is to work towards improving the policy
specification, reinforcement learning model, and a Chromium implementation.

Acknowledgments
This work is fundeded by Supelec, CominLabs SECCLOUD working group and the ad-
ministrative region of Brittany. We also thank the CELTIC and ASCOLA teams in the
SECCLOUD project for their valuable inputs on our ideas.

References
[AAP10] Mário S. Alvim, Miguel E. Andrés, and Catus Palamidessi. Probabilistic Infor-

mation Flow. In 25th Annual IEEE Symposium on Logic in Computer Science,
pages 314–321. IEEE, July 2010.

[ACPS12] Mário S. Alvim, Kostas Chatzikokolakis, Catuscia Palamidessi, and Geoffrey
Smith. Measuring Information Leakage Using Generalized Gain Functions. In
2012 IEEE 25th Computer Security Foundations Symposium, volume 0, pages
265–279. IEEE, June 2012.

[AF09] Thomas H. Austin and Cormac Flanagan. Efficient purely-dynamic information
flow analysis. ACM SIGPLAN Notices, 44(8):20, December 2009.

[AHSS08] Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands.
Termination-insensitive noninterference leaks more than just a bit. In Pro-
ceedings of the 13th European Symposium on Research in Computer Security,
pages 333 – 348. Springer-Verlag Berlin, Heidelberg, 2008.

[Aus13] TH Austin. Dynamic information flow analysis for Javascript in a web browser.
PhD thesis, University of California, Santa Cruz, 2013.

[Bie13] Nataliia Bielova. Survey on JavaScript security policies and their enforcement
mechanisms in a web browser. The Journal of Logic and Algebraic Program-
ming, 82(8):243–262, 2013.

[DP10] Dominique Devriese and Frank Piessens. Noninterference through Secure Multi-
execution. 2010 IEEE Symposium on Security and Privacy, pages 109–124,
2010.

[GD12] Willem De Groef and Dominique Devriese. FlowFox: a web browser with flexi-
ble and precise information flow control. In Proceedings of the 2012 ACM con-
ference on Computer and communications security, pages 748—-759, Raleigh,
North Carolina, USA, 2012. ACM.

[HS12a] Daniel Hedin and Andrei Sabelfeld. A perspective on information-flow con-
trol. In Benedikt Hauptmann Tobias Nipkow, Orna Grumberg, editor, NATO



Deepak Subramanian and Guillaume Hiet and Christophe Bidan

Science for Peace and Security Series - D: Information and Communication
Security, volume 33: Software Safety and Security, pages 319 – 347. IOS Press,
2012.

[HS12b] Daniel Hedin and Andrei Sabelfeld. Information-Flow Security for a Core of
JavaScript. In 2012 IEEE 25th Computer Security Foundations Symposium,
pages 3–18. IEEE, June 2012.

[Mas94] James L Maseey. Guessing and Entropy. In Proceedings of International Sym-
posium on Information Theory, page 204. IEEE, 1994.

[OWA] Category:OWASP Top Ten Project - OWASP.

[Pli00] John O Pliam. On the Incomparability of Entropy and Marginal Guesswork
in Brute-Force Attacks. In Progress in Cryptology - INDOCRYPT 2000, First
International Conference in Cryptology in India, pages 67–79, 2000.

[R6́1] Alfréd Rényi. On measures of entropy and information. In Proceedings of
the Fourth Berkeley Symposium on Mathematical Statistics and Probability,
volume 1, pages 547–561, 1961.

[Sha48] CE Shannon. A Mathematical theory of communication. Bell System Technical
Journal, 27:379–423,625–656, 1948.

[SM03] Andrei Sabelfeld and A.C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1):5–19, January 2003.

[SS98] Andrei Sabelfeld and David Sands. A per model of secure information flow in
sequential programs. Higher-order and symbolic computation, 14:40–58, 1998.

[Wika] Bank card number.

[Wikb] PAN Truncation.


