
Using Side Channel Information for Improving
Data Partitioning Strategy to Test Smart Cards

Putt Benjamin (benjamin.putt@etu.unilim.fr)∗

Putt Ethan (ethan.putt@etu.unilim.fr)∗

Lanet Jean-Louis (jean-louis.lanet@unilim.fr) ∗

Abstract: The fuzzing approach is a fast and simple way to use generated or modified
inputs to evaluate the resistance of an application. But it has several limitations due to
the models precision which is used for the input generation: random and/or simple models
cannot reach all of the states and significant values, but higher model precisions can result in
a combinatorial explosion of test cases. In this paper, we propose a new method based on the
combination of timing attacks with the use of fuzzing techniques to discover and classify the
behavior of the system under test. This new technique aims to solve the test space explosion
and to simplify the fuzzing process configuration. We will show the use of this approach to
discover the behavior of an applet loaded in a Java Card.

Keywords: Security, Software testing, Fuzzing, Side Channel attacks, Java Card

1 Introduction
The development of most systems must verify that the implementation of their function-
alities are correct, often thanks to testing. Security dedicated systems must also check
that no vulnerability remains in the system before deployment. Such software needs to be
tested with regard to these two aspects. The main goal of functional software testing is to
find discrepancies between the actual behavior of the system’s functions and the expected
one described in the functional specification. Vulnerability testing aims to find a behavior
that violates security policies. A security policy is a set of rules defining the acceptable
and rejectable values of a system as its state changes through time. Policies define what
is allowable or desirable in the system and hence the notion of computer vulnerability
ultimately depends on the notion of policy.

Software vulnerability comprises of several forms: access control, state space and fuzzy.
Access control [RD82] consists in defining through an access matrix a partition for a given
state of authorized commands and unauthorized states. A state space vulnerability [BB96]
consists in reaching an unauthorized state from valid state using a valid command. Fuzzy
vulnerability has been introduced by Amoroso [Amo94] who defines a vulnerability as an
event that allows a threat to potentially occur. Such a policy is often not specified and
consists in checking that what is not specified should not occur. Thus, verifying that a
non expected command should not trigger an event in the system needs to test all the non
specified values of the input command. It moves the challenge from a test activity to a

∗ University of Limoges, Computer Science Department

Putt Benjamin, Putt Ethan and Lanet Jean-Louis

proof activity (exhaustive search with the variable domain). The cost of the latter is often
non affordable.

The issue is to generate test cases that evaluate the presence of hidden commands
without exploring the entire state space. A solution has been proposed by [SFL13] but it
requires to build a detailed model of the system. A less costly technique is the fuzzing,
which tries to exercise different parts of the program. We propose in this paper to improve
the data generation of a fuzzer by using leaked information from the processor. This
allows to infer the behavior of the program even if the response provided does not leak
information, and thus improve the data partitioning.

The rest of the paper is organized as followed in the first section we introduce the
fuzzing technique and the next section the specific domain of the smart card. The third
section introduces the smart card test environment. In a forth section, we present the side
channel attacks and in particular timing attacks. Then, we develop our solution which is
then evaluated. In the last section, we conclude this work.

2 Discovering Vulnerabilities with Fuzzers
Fuzzing is a testing technique based on the analysis of the software behavior when its
inputs are fed with particular data (e.g. invalid or random data). The fuzzing presents
an interesting approach to software testing and has attractive benefits: it is an automated
or a semi-automated process and it is lighter than other testing methods. It was invented
in 1988 by Barton Miller who realized that some Unix command line tools would crash
when random inputs are given [TDM08, Tak09]. A fuzzer can be considered as a testing
technique used to uncover a variety of issues like: coding errors; security vulnerabilities;
Buffer Overflow and so on, using unexpected, malformed, random data as program inputs
or unexpected commands in the case of stateful system.

• Data Generator: this module is responsible for generating the inputs that will be used
to drive the System Under Test (SUT). The generated abstract tests are provided
to the SUT by the delivery module. The Data Generator concentrates the power of
the fuzzer tool.

• Delivery Mechanism: the delivery mechanism get the abstract tests from the data
generator and adapts them to be sent to the SUT. This module is in charge of
adapting the test cases to the target i.e. packing the protocol data into a transport
protocol.

• Monitoring System: the monitoring system observes the behavior of the SUT as it
executes the test cases and collects the output of the system. The log can then be
analyzed either manually or automatically if the specification is precise enough.

2.1 Existing Techniques
Here we will only detail the approaches that do not rely on the source code. Fuzzing
is an approach in the context of security assessment, for software testing in a black box
testing approach. Testing applications with negative test cases must face the problem of
too many cases to exercise. The concept of a fuzzer is that the input data of a command
is tampered in order to test a target application. Fuzzing handles this by automating

the testing, allowing the evaluator to focus on other tasks. Choosing randomly the data
to send is often inefficient. To make testing more efficient, only certain boundaries or
patterns may be used. There exists two main techniques for determining the data used
through test cases: data generation and data mutation.

The mutation-based fuzzers are the simplest. They use an existing valid data session
and apply several transformations before sending it to the System Under Test (SUT).
These transformations are most of the time minor substitutions of the input stream with
random data. The behavior of the SUT is logged and analyzed. This technique is almost
exclusively used for testing network protocols and parsers because it is very easy to save
a session and replay it on these softwares. This solution might be more appropriate when
fuzzing very large or unknown protocols.

The generation-based fuzzers are smarter than mutation based ones. They generate
the input data from the scratch based on the specification or a command format. They
provide a set of tools for describing the software under test inputs, data and state machine.
This means that a specification needs to be written for each piece of software to fuzz. This
model allows the data generator to output specific data targeting the software and thus,
enhance the test coverage.

The main challenge resides in the choice of input data that can reveal software errors.
An intelligent fuzzer does not just randomly change fields to produce invalid data. It uses
the knowledge about the specification or the format to produce data. Intelligence might
also include operations such as calculating and appending cryptograms. The trend is to
design generic fuzzing frameworks which provide basic components for building specific
fuzzers targeting the software under test. These frameworks can be used to design a
fuzzing process which combines both previous approaches, and therefore can be used to
fuzz a wide range of software. Peach [Edd04] and Sulley [Ami04] are two open source
examples of such frameworks. They provide a language to model inputs and states of a
system and generate test data automatically. The main benefit with this fuzzing technique
is the high ratio of automation to manual work. Each input data or field of a protocol is
described in term of domain and the fuzzer has several heuristics to choose the value in
the domain.

2.2 Limitations
Current fuzzing frameworks have three major issues. We describe them in this section. The
first issue is inherent to the fuzzing technique: how to deal with the test case combinatorial
explosion. Fuzzing process is not deterministic because it uses random test data. To gain
more control over this process, several strategies are used to decrease the testing set. One
of them will only generate some values around the input boundaries. However, these
strategies have also the effect of limiting the test coverage. The other approach consists
in partitioning the input domain of a function being tested and selecting test data from
each partition.

Various methods for creating test partitions are discussed in the literature [RC85],
[OB88] but they are based on the knowledge of the specification or the implementation.
None of these methods are available when working in a black box context. It is likely to
choose loose test generation strategies (i.e. wider bounds) nowadays, as the number of
tests per second ratio is very high for common software. It increases the test coverage but
also consequently the difficulty of results analysis. This work is cumbersome and most of

Putt Benjamin, Putt Ethan and Lanet Jean-Louis

the fuzzing frameworks lacks of tools to ease this process. There are some works in this
domain to solve this issue by coupling the fuzzer process with an oracle [MPRB10] or by
using several existing implementations of a specification to automatically classify the test
results [YCER11].

To improve the test generation quality and enhance the fuzzing process, fuzzing frame-
works use models to describe the software under test inputs. However this approach is
really cumbersome when the software under test is somewhat complex. Moreover, the
grammar used by the fuzzer is sometimes too limited for describing the inputs of the
software under test as described in [GMICL11].

3 Testing Smart Card Application
Smart cards provide a tamper resistant environment and are widely deployed in sensitive
applications like mobile phone identification (USIM), banking system etc. Smart cards
have small computation and memory capacity, but these limited capabilities are provided
in highly embedded and secure components. Nowadays most of the USIM cards are based
on a Java Card Virtual Machine (JCVM). Java Card is a smart card that implements
the standard Java Card 3.0 (Sun, 2010) in one of the two editions Classic Edition or
Connected Edition. Such a smart card embeds a Virtual Machine (VM), which interprets
application byte codes already romized with the operating system or downloaded after
issuance. There are some works dedicated on testing smart cards using a model based
approach. Model-based test case generations has turned out to be a viable alternative to
hand-written tests for smart card applications, but it involves additional cost in order to
construct the model and the test case specifications. Such a technique is dedicated for
functional testing not for vulnerabilities search.

3.1 Java Card Application

An applet receives commands, makes computations and responds; the card acts as a server.
The Application Protocol Data Unit (APDU) is used for the communication between a
software running on a computer and an applet running on a smart card. An APDU is built
by concatenating several bytes corresponding to each APDU field. In its simplest form,
an APDU command takes one byte for the instruction class (CLA, which corresponds to
P0 in the algorithm), one byte for the instruction code (INS, i.e; P1), one byte for the first
parameter (P1, i.e; P2) and one byte for the second parameter (P2, i.e; P3) followed, if
needed by data and finally by the number of expected data in the response APDU. This
latter is even simpler: it takes a stream of bytes (which is the applet response) followed by
two status bytes. Successful execution of a command can depend on the previous command
history (adequate rights have been presented to perform the current command). Designing
a Java Card applet must take into account the probability of an attack (mainly physical),
leading the design more complex due to the redundancy needed for the computation or
the verification of the internal data integrity. The fact that this technology is derived from
the main stream Java implies that only a few dedicated tools are available. For example,
there is no tool for computing the code coverage of test suites. Often tools have to be
redesigned or adapted for this platform.

3.2 Fuzzing Java Card Application
Prior works have been done for applying fuzzing on smart cards and in particular on
Java Card applications. One of the challenges for testing these type of platforms, is the
adaptation of the delivery mechanism and monitoring system. The first mechanism is used
to transmit test cases provided by the data generator to the card. The second mechanism
is in charge of recording the actual response of the system under test for future analysis.
But the most important issue to solve is related to the domain of the input parameters
and the policy to choose a concrete value for each parameter.

In [BBKL11], the authors explain how they adapted the Peach framework for testing
Java Card Web Server enabled smart cards and how they enhanced the Peach configuration
file to infer automatically the oracle configuration from it. They have used their smart
card dedicated fuzzer to study several smart card protocol in particular the BIP (Bearer
Independent Protocol). In [Lan11], the author describes how he used the Sulley fuzzing
framework to test several implementations of the EMV protocol running on different smart
cards. He uses a reference implementation and an implementation under test and uses the
first one as an oracle in case of discrepancies. In [Guy10] the author shows how simple it
is to discover all the commands accepted by a smart card application. He proposes a naive
solution based on using a combination of the two parameters (P1 and P2) of the command
to improve the resistance against a fuzzer. As Barreaud demonstrated by fuzzing also these
parameters, such a counter measure does not resist to any fuzzer. Alimi presented another
fuzzer in his PhD [Ali12] with a new approach based on genetic algorithms to chose the
input data. He applied the fuzzer on an EMV application, but did not solve the state
problem.

All these fuzzers bring to the fore an inherent problem of the fuzzer the input data
choice policy. None of these approaches have been able to overcome the parameters com-
binatorial explosion. Thus they are inefficient in detecting hidden commands.

4 Side Channel Attacks
Side channel attacks is a hot topic in the smart card security field. They are almost
exclusively used to recover public cryptosystem secret (i.e. private key). In 1996, P.
Kocher demonstrated that knowing the time needed to perform private key operations on
RSA or Diffie-Hellman protocol may result in breaking a cryptosystem [Koc96]. In 1998,
Dhem et al. [DKL+98] implemented a timing attack able to obtain the 512-bit RSA key
of a smart card chip in a couple of minutes. Brumley and Boneh [BB03] managed to
attack the SSL protocol by measuring the time an OpenSSL server takes to respond to
decryption queries. The attacker managed to extract a RSA private key stored in a server
by using approximately a million queries in a couple of hours. Timing attacks use the
time spent by a processor to perform some computation to infer some information about
data being processed. A processor will take different amounts of time to process different
inputs according to the control flow graph. The most common factors are the following:

• instructions are executed in different amount of processor cycle (e.g. multiplication
and division will take more processor cycle than addition and subtraction),

• compiler optimization (for example, short-circuited conditional checking),

Putt Benjamin, Putt Ethan and Lanet Jean-Louis

• cache hits or misses.

To mitigate timing attack, algorithms should be designed to run for a constant time
regardless of the input data. But it is very hard to build a software which will respect
this principle (due to compiler optimizations amongst other things). Moreover, on secure
elements, the CPU does not have cache components which add noise to the measures.
Recently smart card development, countermeasures have been integrated at different levels
to prevent these attacks. But all these counter measures are only at the lower level
(assembly language) not at the Java language level. As far as we know there is no platform
implementing counter measures at the virtual machine level.

5 Enhancing the Data Generator with Data Partitioning

In order to fix the fuzzing issues, we have chosen to combine both previous techniques
to design a fuzzer which uses a timing attack on a Java Card based. This combination
of existing tools brings a new approach to software testing. We have developed in Java
a proof of concept for testing an applet running on a Java Card platform. The input
domain of each parameter is the cardinal of the type byte, so the number of tests is
the combination of all these parameters. In our approach, we have two steps to set up
the different partition before fuzzing. The complexity of each of the two phases is only
the cardinal of the type byte which reduce drastically the complexity. Then the fuzzing
step can occur which will perform the combinatorial permutation of each element in the
partition. And at that step the complexity is the combination of the number of partition.
The partition analysis using the side channel information is the major contribution of this
method.

5.1 Creating the partitions

The goal of data partitioning is to make the input data split in such a way that our tool
selects test cases based on subsets which are a good representation of the entire domain.
The partition process divides the data domain into sub-domains with the property that
within each sub domain either all elements produce the correct result or all elements
produce an incorrect result. The idea is to measure the response time ti for each specified
behavior. The algorithm has four steps has shown hereafter.

Data: P the set of input parameters
Result: C the set of data partition

1 Min← ∅; C ← ∅; InitParameter();
2 for i← 0 to MAXPARAMS do
3 Pi ← NON_V ALID_V ALUE;
4 ti,j ← Send(Pi,j , data);
5 end
6 SortedOrder ← Sort(ti,j);
7 for i ∈ 0 to MAXPARAMS using the SortedOrder do
8 for j ← 0 to MAXBY TE do
9 Pi ← j;

10 ti,j ← Send(Pi,j , data);
11 end
12 InitParameter();
13 Mini ← Sort(ti);
14 for j ← 0 to MAXBY TE do
15 Mean(ti,j);
16 if ti,j > Mean(ti,j) + δ then
17 Ci ← CreateNewPartition(j);
18 end
19 end
20 end
21 Sort(Min);
22 DefineCFG(Min);

// Fuzzing step
23 for i← 0 to MAXPARAMS do
24 for j ∈ each subdomain of Ci do
25 Resi,j ← Send(Pi,j , data);
26 end
27 end

Algorithm 1: Partitioning algorithm

Step 1 : Get the Evaluation Order We initialize the set of partition C to empty and
the set Min of the minimum value for each parameter which will be used to determine
the control flow graph. We initialize each parameter to a fixed value, valid with respect
to the specification (line 1). In the algorithm given below, the function InitParameter()
is in fact the result of a preprocessing of the input domains of all the parameters from the
specifications. Then for each parameter, we choose a non valid value of one parameter
(line 3). On the host, the program sends commands to the reader which in turn sends
the commands to the card and measures the time spent to respond and send it back to
the host (line 4). At that step, after sorting the response times (line 6), we know the
evaluation order of each parameter by the program under test. The complexity of this
step is O(n) with n equal to the number of parameters

Putt Benjamin, Putt Ethan and Lanet Jean-Louis

Step 2 : Search for Hidden Commands According to the evaluation order obtained
in the previous phase, we can exercise each parameter with non defined values (line 10)
and we measure the time spent to respond and send it back to the host (line 10). At
that step, we have obtained the different behavior of the program for the different pa-
rameters without any combination. We can detect here hidden commands that are not
based on the combination of different parameters. The complexity of the second loop is
O(nb_Param ∗ byteDomain).

Step 3 : Build the Partition We create the partition. We sort in an increasing
order the values (line13) and we compute the current mean (m) of the values (line 15) to
eliminate minor deviation of the collected metrics. If the value is different, we add a new
subset to the set C representing the partition. Whatever the returned value are, we can
discriminate with the measured time the modification of the behavior. The response time
for each command can have some slight differences. These differences are mainly related
to the acquisition system but also we believe that some smart card operating systems
implements software caches. We have observed on some cards a deterministic delta (a two
values delta) when a given command is executed after other commands. For that reason,
we need to define a threshold acceptable to discriminate the command response times. In
a preliminary learning step in white box, we have defined the value of δ then we set up
the interval [m − δ;m + δ] and we make a new cluster for each values out of it (line 17).
At that step all the sub-domains of C have been identified. The complexity of this step
depends on the program, in the worst case any value of each parameter has a different
behavior. In fact, we decompose into two different steps, but it is done in the previous
loop.

Step 4 : Fuzz it ! In a last step, we sort the Min value of all parameters (line 21) in
order to deduce the evaluation order of the parameters (line 21) and to rebuild the control
flow graph of the application. This could have been done in the first step, but we have to
redo it according to the detected hidden commands.Then the fuzzing step can start. For
each parameter we chose one value in each sub-domain (line 24). We send the commands
to the reader collecting the data and the status word of the card (line 25) testing all the
possible permutations.

Collecting the response time needs to avoid any bias in the measurements. The time
measured with the workstation has too much variation due to the different processes
executed on it. For that purpose, we use a specific reader able to measure precisely the
time, the MP300 TC3 from Micropross. We can observe that the response time to a
command can differs revealing groups of different behaviors as shown in figure 1. We can
infer that this parameter has three different treatments plus a default treatment which
leads to four sub-domains.

5.2 Example: a One Time Password
We use the OTP (One Time Password) example that generates a keyed hash using the
DES algorithm and an implementation is given is presented in Listing 1. The specification
states that there is only one CLA valid (P0= 0), three INS (P1 = 0x34, 0x36, 0x38) , P2
is always null and the value of P3 is between 0x50 and 0x57 for the get or put data
command and either 0 or 1 for the verify command. It has an internal state, i.e. getting

an otp is only possible if the user PIN code has been verified and all the parameters have
been initialized.

Listing 1: The one time password code
1 public void p r o c e s s (APDU apdu) throws ISOException {
2 i f (s e l e c t i n g A p p l e t ()) return ; // c a l l e d by the s e l e c t apdu
3 byte [] cmd_apdu = apdu . g e t B u f f e r () ;
4 U t i l . arrayFi l lNonAtomic (wy , (short) 0 , LEN_WY, (byte) 0) ;
5 i f (cmd_apdu [ISO7816 .OFFSET_CLA] == ISO7816 . CLA_ISO7816) {
6 switch (cmd_apdu [ISO7816 .OFFSET_INS]) {
7 case INS_VERIFY: cmdVERIFY(apdu) ; break ;
8 case INS_PUTDATA: cmdPUTDATA(apdu) ; break ;
9 case INS_GETDATA: cmdGETDATA(apdu) ; break ;

10 default :
11 ISOException . throwIt (ISO7816 .SW_INS_NOT_SUPPORTED) ;
12 } // end swi tch
13 } else {
14 ISOException . throwIt (ISO7816 .SW_CLA_NOT_SUPPORTED) ;
15 } // end e l s e
16 } // end process

Some of the valid commands are:

• VERIFY: 0x00, 0x34, 0x00, 0x01, (payload) 0x04, 0x01, 0x02, 0x03, 0x04; it checks
the validity of the user PIN code which has a length of 4 bytes and the code is 1234.

• PUTDATA: 0x00, 0x36, 0x00, 0x56, (payload) 0x2, 0x00, 0x54; this command ini-
tialize the otp counter with two bytes having the value 100,

• GETDATA: 0x00, 0x38, 0x00, 0x57, (no payload) 0x04. This command requests to
obtain an otp having the length of 4 bytes.

Of course, there are other commands and the state requires also that all the initial-
ization must have been done and the user is authenticated before sending an otp. The
first step of our algorithm is to evaluate the evaluation order of each parameter. Each
parameter is set up to its initial valid value (step 1), for example we start with the sec-
ond command PUTDATA 0x00, 0x36, 0x00, 0x56, 0x2, 0x00, 0x54 with valid parameters.
Then each element of the command receives a wrong value (out of its specification) and the
response time is collected for the instances of this command i.e. t0 ← 0x02, 0x36, 0x00,
0x56, 0x2, 0x00, 0x54, then t1 ← 0x00, 0x76, 0x00, 0x56, 0x2, 0x00, 0x54 and so on. Then
we compare all the response times for this command and we can sort the evaluation order.
With the code given in Listing 1 we obtain: t1 < t2 < ... < tn says CLA is tested first,
then the INS field is tested then the control flow enters the method cmdGETDATA().
There the evaluation starts with P1 and the interval for P2 after the content of P2 is eval-
uated a second time in the switchcase. Then the state data are evaluated first a previous
command should have validated the user PIN, second the initialization phase is complete.
Then there is no more control flow.

Then we search for hidden command and we build the partition. We know the evalu-
ation order, here the lowest response time corresponds to an erroneous CLA. We can can
try all the 255 values of this parameter. We discover only two partitions one corresponding
to CLA equals 0 and one for the rest. We do the same evaluation for the other parameters.

Putt Benjamin, Putt Ethan and Lanet Jean-Louis

Then the fuzzing can start using only one value in each partition. The complexity of this
last part is related to the combination of the partition domains of all parameters.

Listing 2: generating an OTP
1 private void cmdGETDATA(APDU apdu) {
2 byte [] cmd_apdu = apdu . g e t B u f f e r () ;
3 i f (cmd_apdu [ISO7816 .OFFSET_P1] != 0) {// check i f P1=0
4 ISOException . throwIt (ISO7816 .SW_WRONG_P1P2) ; } // end i f
5 short tag = (short) (cmd_apdu [ISO7816 .OFFSET_P2] & (short) 0x00FF) ;
6 i f ((tag < 0x50) | | (tag > 0x57)) {
7 ISOException . throwIt (ISO7816 .SW_WRONG_P1P2) ; } // end i f
8 short l e = (short) (cmd_apdu [ISO7816 .OFFSET_LC] & 0x00FF) ;
9 switch (tag) {

10 case (byte) 0x50 : . . . break ;
11 case (byte) 0x51 : . . . break ;
12 . . .
13 case (byte) 0x57 : // g e t a new NSU
14 i f (l e != (byte) 8) ISOException . throwIt (ISO7816 .SW_WRONG_LENGTH) ;
15 i f (use rp in . i s V a l i d a t e d () == fa l se) {
16 ISOException . throwIt (ISO7816 .SW_SECURITY_STATUS_NOT_SATISFIED) ; }
17 i f (stateMachine != INIT_DONE)
18 ISOException . throwIt ((short) (ISO7816 .SW_DATA_INVALID+2)) ;
19 generateNSU () ;
20 U t i l . arrayCopy (wy , (short) (INDEX_MAC) ,wy , (short) (0) , (byte) 8) ;
21 break ;
22 default :
23 ISOException . throwIt (SW_DATA_NOT_FOUND) ;
24 }
25 apdu . setOutgoingAndSend (short) 0 , (short) l e) ;
26 }

5.3 Evaluation
We have tried our method on several Java Card applications. The content of a first set of
application was known thus we worked in white box. At that step we fixed the value of
δ. We have developed a code coverage API (such a tool does not exist for Java Card) to
verify the ability of our partition algorithm to cover all the branches of the application.
We can see in the Figure 1 that this applet responds to three instructions value: 0x34,
0x36 and 0x38 with no hidden commands. And several runs (different colors) provide the
same result. Then in a next step we will exercise the tool on hostile Java Card applications
to verify the ability to discover hidden commands.

From the previous results, we discovered that we can infer some properties of the applet
under test. Indeed, we can also deduce the order in which each APDU fields are tested
inside the applet: the APDU field generating the smallest mean value on the sample is the
first field to be tested. This is only due to the a particular way of programming Java Card
which requires to cancel any command for which the header is unspecified by throwing
an exception. Of course this can not a priori be generalized to other application domain.
This gives valuable information about the treatment done inside the card and in particular
the control flow graph of the application. By iterating, we can deduce a tree representing
the values of APDU commands used in the applet and the order in which they are tested.

Testing the entire commands space which would have resulted in a combinatorial ex-
plosion (28(P0) ∗ 28(P1) ∗ 28(P2) ∗ 28(P3) = 268.435.456 tests. Within our framework,

Fig. 1: The INS values.

the number of tests is limited to the number of partitions of each parameter. If there
is no hidden command dom(P1) = {0, 1}, dom(P2) = {0x34, 0x36, 0x38}, dom(P2) =
{0, 1}, dom(P3) = {0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57}. For example, the whole
number of test of the otp application requires to automatically generate (22(P0)∗23(P1)∗
22(P2) ∗ 27(P3) = 144 tests and any hidden command will be discovered.

To ease the development process, we have checked our testing framework against an
applet for which we had the source code during the phase of design. At the end of the
development process, to test our approach in a black-box environment, we have checked our
framework against several applets for which we do not know anything except a minimal
specification (used to create a minimal oracle). Our framework was able to guess the
APDU commands used in these applets and the order in which the applet was testing
APDU command fields. Moreover, these results were obtained in less than a minute for
typical applets. All the developments have been written in Java and will be available as
an open source project.

5.4 Limits of the Approach
The first limit is inherent with measurement precision. If an application is coded in
constant time, we will not discover hidden command. Having a precise knowledge on the
execution time of a Java Card virtual machine is difficult. As far as we know, there are
no Java Card applications written in constant time.

The second limit is inherent with fuzzing and security applications. If you try a com-
mand in an unexpected state or a ill formed command in a correct state, there is a risk to
kill the card (message card is mute). So once a card is unresponsive, it needs to evaluate
the context and either remove the dangerous command or change the card.

It is possible to extend the approach to the data field (the payload) of the command
to some extends. But it requires to have cryptographic computation capabilities within
the fuzzer and access to the keys to generate correct cryptograms. In a pure black box
approach, this is not affordable.

It is possible to apply this technique to other devices under some hypotheses: the
execution time must be repeatable. If there is hardware memory caches, they will be a

Putt Benjamin, Putt Ethan and Lanet Jean-Louis

bias in the measurement and thus will not be applicable. More over if the operating system
of the target supports multithreading, it generates another bias. The fact that we are able
to rebuilt the control flow graph is mainly due to the smart card application development
process where an exception is thrown when the conditions are not satisfied which restrict
also the applicability of this technique.

6 Conclusion and future works
In this paper, we have presented a new method for testing software and the associated
framework that we designed to validate the approach. It allow to define classify the input
data into sub-domains according to the behavior of each parameters. Then, with our data
generator that uses side channel information, fuzzing the SUT allows to evaluate the com-
bination of all the parameter swhich was not possible until now. The framework is thus
able to discover hidden commands, that is to say unspecified commands which will trigger
computations in the tested software. Due to the specific nature of the application (the do-
main of the parameters is the byte) and its programming model we are also able to retrieve
the control flow graph of the application. The limit of the approach consist in writing ap-
plications with constant execution time: balancing all the branches of the program. If this
is possible at the assembly language (some assembly instructions) it is not affordable at
the virtual machine level (hundred or thousand of assembly instructions). When we use
the oracle capabilities, we have a testing framework which do a semi-automatic functional
testing: we still need to express the domain of the input variables from the specification.
In order to verify the quality of the generated test suites we have had to develop our own
code coverage tool. This work has been oriented into detecting hidden commands but we
plan to continue this work, especially by extending the test to other APDU fields. There
are still some issues related with the internal state which can lead to different behaviors,
the effect of the software or hardware caches that need to be investigated.

We are evaluating other side channel information leakages like electromagnetic field.
Especially when the smart card writes into the EEPROM it generates a visible pattern on
an oscilloscope acquisition curve. This information can be analyzed and provided to the
fuzzer. Writing in EEPROMmeans that the system has written a state variable (persistent
information) i.e. the behavior of the system could be different after this command. We are
working on the reverse of Java Card applet using template recognition of EM signatures.
It appears that method invocation and return are patterns easy to recognize: building
and destroying the Java frame. Thus we plan to use this information to obtain a more
accurate control flow graph.

References
[Ali12] V. Alimi. Contribution au déploiement des services mobiles et à l’analyse de

la sécurité des transactions. Master’s thesis, University of Caen, 2012.

[Ami04] P. Amini. Sulley fuzzing platform. 2004.

[Amo94] E. Amoroso. Fundamentals of Computer Security Technology. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1994.

[BB96] M. Bishop and D. Bailey. A critical analysis of vulnerability taxonomies.
1996.

[BB03] D. Brumley and D. Boneh. Remote timing attacks are practical. In In Pro-
ceedings of the 12th USENIX Security Symposium, pages 1–14, 2003.

[BBKL11] M. Barreaud, G. Bouffard, N. Kamel, and J.L. Lanet. Fuzzing on the http
protocol implementation in mobile embedded web server. 2011.

[DKL+98] J. F. Dhem, F. Koeune, P.-A. Leroux, P. Mestre, J.-J. Quisquater, and J. l.
Willems. A practical implementation of the timing attack, 1998.

[Edd04] M. Eddington. Peach fuzzing platform 3. 2004.

[GMICL11] A. Gauthier, C. Mazin, J. Iguchi-Cartigny, and J.-L. Lanet. Enhancing fuzzing
technique for okl4 syscalls testing. In ARES, pages 728–733. IEEE, 2011.

[Guy10] V. Guyot. Smart card the invisible bullet. Proceeding of the 9th European
Conference on Information Warfare and Security, 2010.

[Koc96] P. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. CRYPTO ’96, pages 104–113, London, UK, UK, 1996.
Springer-Verlag.

[Lan11] J. Lancia. Un framework de fuzzing pour cartes a puce: application aux
protocoles. SSTIC, 2011.

[MPRB10] L. Martignoni, R. Paleari, Giampaolo F. Roglia, and D. Bruschi. In Paolo
Tonella and Alessandro Orso, editors, ISSTA, pages 171–182. ACM, 2010.

[OB88] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying
and generating fuctional tests. Communication of the ACM, 31(6):676–686,
June 1988.

[RC85] D. J. Richardson and L. A. Clarke. Partition analysis: A method combining
testing and verification. IEEE Trans. Softw. Eng., 11(12):1477–1490, Decem-
ber 1985.

[RD82] D. Robling and E. Dorothy. Cryptography and Data Security. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1982.

[SFL13] A. Savary, M. Frappier, and J.-L. Lanet. Detecting vulnerabilities in java-card
bytecode verifiers using model-based testing. In IFM, pages 223–237, 2013.

[Tak09] A. Takanen. Fuzzing: the past, the present and the future. 2009.

[TDM08] A. Takanen, J. DeMott, and C. Miller. Fuzzing for Software Security Testing
and Quality Assurance. Artech House, Inc., Norwood, MA, USA, 1 edition,
2008.

[YCER11] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding bugs
in c compilers. In Mary W. Hall and David A. Padua, editors, PLDI, pages
283–294. ACM, 2011.

